Pseudorotation barriers of biological oxyphosphoranes: a challenge for simulations of ribozyme catalysis.

نویسندگان

  • Carlos Silva López
  • Olalla Nieto Faza
  • Angel R de Lera
  • Darrin M York
چکیده

Pseudorotation reactions of biologically relevant oxyphosphoranes were studied by using density functional and continuum solvation methods. A series of 16 pseudorotation reactions involving acyclic and cyclic oxyphosphoranes in neutral and monoanionic (singly deprotonated) forms were studied, in addition to pseudorotation of PF5. The effect of solvent was treated by using three different solvation models for comparison. The barriers to pseudorotation ranged from 1.5 to 8.1 kcal mol(-1) and were influenced systematically by charge state, apicophilicity of ligands, intramolecular hydrogen bonding, cyclic structure and solvation. Barriers to pseudorotation for monoanionic phosphoranes occur with the anionic oxo ligand as the pivotal atom, and are generally lower than for neutral phosphoranes. The OCH3 groups were observed to be more apicophilic than OH groups, and hence pseudorotations that involve axial OCH3/equatorial OH exchange had higher reaction and activation free energy values. Solvent generally lowered barriers relative to the gas-phase reactions. These results, together with isotope 18O exchange experiments, support the assertion that dianionic phosphoranes are not sufficiently long-lived to undergo pseudorotation. Comparison of the density functional results with those from several semiempirical quantum models highlight a challenge for new-generation hybrid quantum mechanical/molecular mechanical potentials for non-enzymatic and enzymatic phosphoryl transfer reactions: the reliable modeling of pseudorotation processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NMR spectroscopic characterization of the adenine-dependent hairpin ribozyme.

Time-resolved NMR spectroscopy was applied to study ribozyme-mediated RNA catalysis in a mutant of the hairpin ribozyme, the adenine-dependent hairpin ribozyme (ADHR; M. Meli, et al. J. Biol. Chem. 2003, 278, 9835-9842) with atomic resolution. The mutant ADHR was designed to investigate the role of cofactors in RNA catalytic mechanisms in order to understand cellular processes that could have b...

متن کامل

Ligand requirements for glmS ribozyme self-cleavage.

Natural RNA catalysts (ribozymes) perform essential reactions in biological RNA processing and protein synthesis, whereby catalysis is intrinsic to RNA structure alone or in combination with metal ion cofactors. The recently discovered glmS ribozyme is unique in that it functions as a glucosamine-6-phosphate (GlcN6P)-dependent catalyst believed to enable "riboswitch" regulation of amino-sugar b...

متن کامل

Solvent structure and hammerhead ribozyme catalysis.

Although the hammerhead ribozyme is regarded as a prototype for understanding RNA catalysis, the mechanistic roles of associated metal ions and water molecules in the cleavage reaction remain controversial. We have investigated the catalytic potential of observed divalent metal ions and water molecules bound to a 2 A structure of the full-length hammerhead ribozyme by using X-ray crystallograph...

متن کامل

An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis.

We have previously shown that a protein derived from the p7 nucleocapsid (NC) protein of HIV type-1 increases kcat/Km and kcat for cleavage of a cognate substrate by a hammerhead ribozyme. Here we show directly that the increase in kcat/Km arises from catalysis of the annealing of the RNA substrate to the ribozyme and the increase in kcat arises from catalysis of dissociation of the RNA product...

متن کامل

Evidence for the Role of Active Site Residues in the Hairpin Ribozyme from Molecular Simulations along the Reaction Path

The hairpin ribozyme accelerates a phosphoryl transfer reaction without catalytic participation of divalent metal ions. Residues A38 and G8 have been implicated as playing roles in general acid and base catalysis, respectively. Here we explore the structure and dynamics of key active site residues using more than 1 μs of molecular dynamics simulations of the hairpin ribozyme at different stages...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 11 7  شماره 

صفحات  -

تاریخ انتشار 2005